E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

نویسندگان

  • Abel L. Carcagno
  • Mariela C. Marazita
  • María F. Ogara
  • Julieta M. Ceruti
  • Silvina V. Sonzogni
  • María E. Scassa
  • Luciana E. Giono
  • Eduardo T. Cánepa
چکیده

BACKGROUND A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats

Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....

متن کامل

Transcriptional and Post-Transcriptional Mechanisms for Oncogenic Overexpression of Ether À Go-Go K+ Channel

The human ether-à-go-go-1 (h-eag1) K(+) channel is expressed in a variety of cell lines derived from human malignant tumors and in clinical samples of several different cancers, but is otherwise absent in normal tissues. It was found to be necessary for cell cycle progression and tumorigenesis. Specific inhibition of h-eag1 expression leads to inhibition of tumor cell proliferation. We report h...

متن کامل

An E2F1-dependent gene expression program that determines the balance between proliferation and cell death.

The Rb/E2F pathway regulates the expression of genes essential for cell proliferation but that also trigger apoptosis. During normal proliferation, PI3K/Akt signaling blocks E2F1-induced apoptosis, thus serving to balance proliferation and death. We now identify a subset of E2F1 target genes that are specifically repressed by PI3K/Akt signaling, thus distinguishing the E2F1 proliferative or apo...

متن کامل

Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expressio...

متن کامل

IKK Regulates Estrogen-induced Cell Cycle Progression by Modulating E2F1 Expression*

The I B kinase (IKK) complex consists of the catalytic subunits IKK and IKK and a regulatory subunit, IKK /NEMO. Even though IKK and IKK share significant sequence similarity, they have distinct biological roles. It has been demonstrated that IKKs are involved in regulating the proliferation of both normal and tumor cells, although themechanismsbywhich they function in this process remain to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011